
CSCI 210: Computer Architecture

Lecture 25: Datapath

Stephen Checkoway

Slides from Cynthia Taylor

1

Today’s Class

• The data path!

CS History: The Manchester Baby

• First stored-program computer
• Ran its first program on June 21, 1948
• Designed as a testbed for the first

random-access memory
• Only arithmetic operations were

addition and subtraction
• Its first program calculated the highest

proper divisor of 218 (262,144), by
testing every integer from 218

downwards
• This program was 17 instructions and

took 52 minutes to run

First Manchester Baby program recreated in MIPS

main:

 lui $s0, 4 # 2^18 = (2^2) << 16

 addi $t0, $s0, -1 # t0 will hold the current divisor to test

outer:

 add $t1, $s0, $zero # t1 = 2^18

inner:

 sub $t1, $t1, $t0

 beq $t1, $zero, done # t0 holds the highest divisor

 slt $t2, $t1, $zero # t2 = 1 if t1 < 0

 beq $t2, $zero, inner # if t2 = 0, then go to inner

 addi $t0, $t0, -1 # Try the next divisor

 j outer

done:

 # t0 now holds the value of the largest divisor of 2^18

The Processor: Data path & Control

• We're ready to look at an implementation of MIPS simplified to
contain only:

– memory-reference instructions: lw, sw

– arithmetic-logical instructions: add, sub, and, or, slt

– control flow instructions: beq

Generic implementation

• Fetch
– Use the program counter (PC) to supply instruction address
– Get the instruction from memory
– Update the program counter to the next instruction

• Decode instruction
– Read registers
– Read the instruction to decide how to execute

• Execute
– Perform necessary data manipulation
– Write to registers

To fetch an instruction and update the PC, what
hardware do we need?

• Fetch

– Use the program counter (PC)
to supply instruction address

– Get the instruction from
memory

– Update the program counter
to the next instruction

A. Register(s), Memory

B. Register(s), Adder, Memory

C. Register(s), ALU, Memory

D. More than this

Instruction Fetch

32-bit
register

Increment by
4 for next
instruction

Generic implementation

• Fetch
– Use the program counter (PC) to supply instruction address
– Get the instruction from memory
– Update the program counter to the next instruction

• Decode instruction
– Read registers
– Read the instruction to decide how to execute

• Execute
– Perform necessary data manipulation
– Write to registers

Registers for instructions

• add $t0, $t1, $t2 needs to read the values of registers $t1 and
$t2 and write to register $t0

• lw $t0, 4($t8) needs to read one register and write one register

• sw $t0, -8($s0) needs to read two registers and write zero
registers

Interface for the register file

• We need the ability to read from up to 2 registers and write up to 1
register

Interface:

• Three 5-bit register select inputs (which come from rs, rt, rd)

• Two 32-bit data outputs (data in registers specified by rs and rt)

• One 32-bit data input (data to write to rd)

• One 1-bit control input (should input data be written to rd or not)

Register File

opcode rs rd sa funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-type rt

Control input that is 1 if the write data
should be written to the register specified
by write register

Generic implementation

• Fetch
– Use the program counter (PC) to supply instruction address
– Get the instruction from memory
– Update the program counter to the next instruction

• Decode instruction
– Read registers
– Read the instruction to decide how to execute

• Execute
– Perform necessary data manipulation
– Write to registers

R-Format Instructions
• Read two register operands

• Perform arithmetic/logical operation

• Write register result

opcode rs rd sa funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-type rt

Data memory

• sub $t0, $t1, $t2 does not read or write memory

• lw $t0, 0($s0) reads 32-bits from memory

• sw $t0, 0($s0) writes 32-bits to memory

Which of these describes our interface for data
memory? What do we need to support

lw 0($t3), $t2 and sw $t4, 4($t5)

Data is what we read from/write to memory,
Select is the address we’re reading/from writing to
control is what operation the data memory does (e.g., load or store)

Data Inputs Data Outputs Select inputs Control inputs

A One 32-bit input One 32-bit output One 5-bit input 2 bits

B Zero inputs One 32-bit output Two 5-bit inputs 2 bits

C One 32-bit input One 32-bit output One 32-bit input 2 bits

D One 32-bit input One 32-bit output One 32-bit input 1 bit

E One 32-bit input One 32-bit output One 5-bit input 1 bit

Load/Store Instructions
• Read register operands

• Calculate address using 16-bit offset
– Use ALU, but sign-extend offset

• Load: Read memory and update register

• Store: Write register value to memory

opcode rs rt immediate

Which is true about the ALU and the
register file in MIPS?

A. The ALU always performs an operation before accessing the register file

B. The ALU sometimes performs an operation before accessing the register
file

C. The register file is always accessed before performing an ALU operation

D. The register file is sometimes accessed before performing an ALU
operation

E. None of the above.

R-Type/Load/Store Datapath

Add $t0, $t0, $t1 $t0 is register 8, $t1 is register 9
$t0 holds 5
$t1 holds 6

lw $t1, 4($t0)
$t0 is register 8, $t1 is register 9
$t0 holds 0x07AB8110
0x07AB8114 holds 12

Branch Instructions

• Read register operands

• Compare operands

– Use ALU, subtract and check Zero output

• Calculate target address

– Sign-extend offset

– Shift left 2 bits (word offset)

– Add to PC + 4

• Already calculated during instruction fetch

What hardware do we need for conditional branch
instructions in our data path?

A. ALU

B. Registers and an ALU

C. Registers, ALU and Memory

D. Registers, an ALU and an Adder

beq $t2, $t3, 0x4F35

Read register operands
Compare operands

Use ALU, subtract and check Zero output
Calculate target address

Sign-extend offset
Shift left 2 bits (word offset)
Add to PC + 4

Already calculated during instruction fetch

Branch Instructions

Branch Instructions
label: add $s0, $s0, $t0
 addi $t0, $t0, 1
 beq $t0, $t1, label

op = 0x04 rs = 8 rt = 9 imm = 0xFFFD
$t0 holds 5
$t1 holds 5

0x4045A130
0x4045A134
0x4045A138

Datapath (still simplified a bit)

	Slide 1: CSCI 210: Computer Architecture Lecture 25: Datapath
	Slide 3: Today’s Class
	Slide 4: CS History: The Manchester Baby
	Slide 5: First Manchester Baby program recreated in MIPS
	Slide 6: The Processor: Data path & Control
	Slide 7: Generic implementation
	Slide 8: To fetch an instruction and update the PC, what hardware do we need?
	Slide 9: Instruction Fetch
	Slide 10: Generic implementation
	Slide 11: Registers for instructions
	Slide 12: Interface for the register file
	Slide 14: Register File
	Slide 15: Generic implementation
	Slide 16: R-Format Instructions
	Slide 17: Data memory
	Slide 18: Which of these describes our interface for data memory? What do we need to support lw 0($t3), $t2 and sw $t4, 4($t5)
	Slide 19: Load/Store Instructions
	Slide 21: Which is true about the ALU and the register file in MIPS?
	Slide 22: R-Type/Load/Store Datapath
	Slide 23: Add $t0, $t0, $t1
	Slide 24: lw $t1, 4($t0)
	Slide 25: Branch Instructions
	Slide 26: What hardware do we need for conditional branch instructions in our data path?
	Slide 27: Branch Instructions
	Slide 28: Branch Instructions
	Slide 29: Datapath (still simplified a bit)

