CSCI 210: Computer Architecture
Lecture 25: Datapath

Stephen Checkoway
Slides from Cynthia Taylor

Today’s Class

* The data path!

CS History: The Manchester Baby

* First stored-program computer
: e Ranits first program on June 21, 1948

=T * Designed as a testbed for the first
.. ! random-access memory

* Only arithmetic operations were
addition and subtraction

* |ts first program calculated the highest
proper divisor of 218 (262,144), by
testing every integer from 218
downwards

* This program was 17 instructions and
took 52 minutes to run

First Manchester Baby program recreated in MIPS

main:

lui $s0, 4 # 2718 = (272) << 16

addi S$t0, $s0, -1 # t0 will hold the current divisor to test
outer:

add stl, SsO0, $zero # tl = 2718
inner:

sub sStl, Stl, S$tO0

beqg $Stl, Szero, done # t0 holds the highest divisor
slt st2, Stl, S$Szero # t2 =1 1if tl1 < 0
beq $t2, Szero, inner # if t2 = 0, then go to inner
addi S$t0, S$t0, -1 # Try the next divisor
J outer

done:

t0 now holds the value of the largest divisor of 2718

The Processor: Data path & Control

 We're ready to look at an implementation of MIPS simplified to
contain only:

— memory-reference instructions: 1w, sw
— arithmetic-logical instructions: add, sub, and, or, slt
— control flow instructions: beqg

Generic implementation

 Fetch

— Use the program counter (PC) to supply instruction address
— Get the instruction from memory
— Update the program counter to the next instruction

 Decode instruction

— Read registers

— Read the instruction to decide how to execute
* Execute

— Perform necessary data manipulation
— Write to registers

To fetch an instruction and update the PC, what
hardware do we need?

 Fetch

— Use the program counter (PC)
to supply instruction address

— Get the instruction from
memory

— Update the program counter
to the next instruction

A.

B.

C.

Register(s), Memory

Register(s), Adder, Memory

Register(s), ALU, Memory

. More than this

Instruction Fetch

Read
address

Instruction ——

Instruction
memory

Generic implementation

 Fetch

— Use the program counter (PC) to supply instruction address
— Get the instruction from memory
— Update the program counter to the next instruction

 Decode instruction

— Read registers

— Read the instruction to decide how to execute
* Execute

— Perform necessary data manipulation
— Write to registers

Registers for instructions

* add StO0, St1, St2 needs to read the values of registers St1 and
St2 and write to register StO

* |w St0, 4(St8) needs to read one register and write one register

* sw St0, -8(Ss0) needs to read two registers and write zero
registers

Interface for the register file

 We need the ability to read from up to 2 registers and write upto 1
register

Interface:

* Three 5-bit register select inputs (which come from rs, rt, rd)
 Two 32-bit data outputs (data in registers specified by rs and rt)

* One 32-bit data input (data to write to rd)

* One 1-bit control input (should input data be written to rd or not)

Register File

Read register
—_—
=
Read register data 1
—_—
number 2
_ Register file
Write Read
- —
register data 2
. Write
data Write

Control input thatis 1 if the write data
should be written to the register specified
by write register

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-type opcode rs rt rd sa funct

Generic implementation

 Fetch

— Use the program counter (PC) to supply instruction address
— Get the instruction from memory
— Update the program counter to the next instruction

 Decode instruction

— Read registers

— Read the instruction to decide how to execute
* Execute

— Perform necessary data manipulation
— Write to registers

* Perform arithmetic/logical operation

R-Format Instructions

* Read two register operands

Write register result

2 | Read ALU operation
register 1 Read
Register 5 |Read data 1
numbers) ~" | register 2
5 |write Registers ¢ Data ALU aALu
Sl result
L register Read
; data 2
Write
Data { — Data
‘RegWrite
a. Registers b. ALU
6 bits 5bits 5bits 5 bits 5 bits 6 bits
R-type | opcode | rs rt rd sa funct

Data memory

* sub St0, St1, St2 does not read or write memory
* |w St0, 0(Ss0) reads 32-bits from memory
* sw St0, 0(Ss0) writes 32-bits to memory

Which of these describes our interface for data

memory? What do we need to support
lw 0(St3), St2 and sw St4, 4(St5)

- Data Inputs Data Outputs Select inputs Control inputs

A One 32-bit input One 32-bit output One 5-bit input 2 bits
B Zero inputs One 32-bit output Two 5-bit inputs 2 bits
C One 32-bit input One 32-bit output One 32-bitinput 2 bits
D One 32-bit input One 32-bit output One 32-bitinput 1 bit
E One 32-bit input One 32-bit output One 5-bitinput 1 bit

Data is what we read from/write to memory,
Select is the address we’re reading/from writing to
control is what operation the data memory does (e.g., load or store)

* Read register operands

Load/Store Instructions

* Calculate address using 16-bit offset
— Use ALU, but sign-extend offset

* Load: Read memory and update register
e Store: Write register value to memory

- 5 [rong ALU y MemWrite
ca 4 operation
~ | register 1 Read Read
_ data 1l — Address —>
Register) 5 |Read data
numbers | register 2
5 |write Registers r Data Data
> register — Write memeny
N Read . data
Write data 2
Data —
Data MemRead
‘ RegWrite
a. Data memory unit
a. Registers b. ALU
opcode rs rt immediate

Sign-
extend

b. Sign extension unit

Which is true about the ALU and the
register file in MIPS?

A. The ALU always performs an operation before accessing the register file

B. The ALU sometimes performs an operation before accessing the register
file

C. The register file is always accessed before performing an ALU operation

D. The register file is sometimes accessed before performing an ALU
operation

E. None of the above.

R-Type/Load/Store Datapath

MemWrite

Address

Write
data

Read

Y

data

\]

Oxec=—

Data
memory

> Regd ALU operation
register 1 Read
Read data 1 o
Instruction | register 2 ALUSrc
_ Registers g4 ALU ALy
| Write data 2 0 result
register "lf
| Write =r
data
RegWrite g
16 [gign. | 32

>

extend

MemRead

MemtoReg

Add St0, StO, Stl

Zero

ALU
result

ALU

ALU operation

StO is register 8, St1 is register 9
StO holds 5
St1 holds 6

| MemWrite

Y

| Read
" | register 1 Read
Read data 1
Instruction | register 2 ALUSrc
Registers
&, | Write dE’?aag 0
register "lf
| Write =r
data
RegWrite
16 Sign- 32

>

extend

Address

Write
data

Read

Y

data

\]

Data
memory

MemRead

MemtoReg

Oxec=—

lw St1, 4(St0)

Zero

ALU
result

ALU

StO is register 8, St1 is register 9
St0 holds 0x07AB8110
0x07AB8114 holds 12

ALU operation

MemWrite

Y

| Read
" | register 1 Read
Read data 1
Instruction | register 2 ALUSrc
Registers
&, | Write dE’?aag 0
register "lf
| Write =r
data
RegWrite
16 Sign- 32

>

extend

Address

Write
data

Read

Y

data

\]

Data
memory

MemRead

MemtoReg

Oxec=—

Branch Instructions

* Read register operands

e Compare operands
— Use ALU, subtract and check Zero output

e Calculate target address
— Sign-extend offset
— Shift left 2 bits (word offset)
— AddtoPC+4

* Already calculated during instruction fetch

What hardware do we need for conditional branch

instructions in our data path?
beq St2, St3, 0x4F35

4. PC-relative addressing
opl rs l r l Address

A. ALU

| PC f" +) - Word

B. Registers and an ALU

Read register operands
Compare operands

Use ALU, subtract and check Zero output
Calculate target address

Sign-extend offset

Shift left 2 bits (word offset)

D. Registers, an ALU and an Adder Add to PC + 4

Already calculated during instruction fetch

C. Registers, ALU and Memory

Instruction

A A

Read
register 1 Read
Read data 1
register 2
Write Registers
register Read
Write data 2
data

RegWrite

16 _| Sign- 32

~ | extend

Branch Instructions

PC +4 from instruction datapath —

Add Sum

ALU Zero

Branch
target

ALU operation

To branch
control logic

Branch Instructions

PC +4 from instruction datapath —

=

Branch

Add Sum target

ALU operation

To branch
control logic

ALU Zero

A A

0x4045A130 label: add Ss0, SsO, St0
0x4045A134 addi Sto, Sto, 1
0x4045A138 beq Sto, St1, label
Read
Instruction register 1
Read
register 2
Write Registers
register
Write
data
RegWrite
16‘ Sign-
~ | extend
op=0x04 |rs=8 |rt= imm = OxFFFD

St0 holds 5
Stl holds 5

Datapath (still simplified a bit)

PC

>Add

PCSrc

\

Y

Read
address
Instruction

Instruction
memory

ALUSrc

Read

register 1 Read
Read data 1
register 2

Registers

Write 09 Read
register data 2
Write

data

RegWrite

16_ Sign-
—>

extend

Add

ALU
result

xc=s

4 ALU operation

Read

Address data

Write Data

32

data memory

MemRead

MemWrite

MemtoReg

	Slide 1: CSCI 210: Computer Architecture Lecture 25: Datapath
	Slide 3: Today’s Class
	Slide 4: CS History: The Manchester Baby
	Slide 5: First Manchester Baby program recreated in MIPS
	Slide 6: The Processor: Data path & Control
	Slide 7: Generic implementation
	Slide 8: To fetch an instruction and update the PC, what hardware do we need?
	Slide 9: Instruction Fetch
	Slide 10: Generic implementation
	Slide 11: Registers for instructions
	Slide 12: Interface for the register file
	Slide 14: Register File
	Slide 15: Generic implementation
	Slide 16: R-Format Instructions
	Slide 17: Data memory
	Slide 18: Which of these describes our interface for data memory? What do we need to support lw 0($t3), $t2 and sw $t4, 4($t5)
	Slide 19: Load/Store Instructions
	Slide 21: Which is true about the ALU and the register file in MIPS?
	Slide 22: R-Type/Load/Store Datapath
	Slide 23: Add $t0, $t0, $t1
	Slide 24: lw $t1, 4($t0)
	Slide 25: Branch Instructions
	Slide 26: What hardware do we need for conditional branch instructions in our data path?
	Slide 27: Branch Instructions
	Slide 28: Branch Instructions
	Slide 29: Datapath (still simplified a bit)

